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Drift waves and tokamak plasma turbulence

Role in the context of fusion research

e Plasma performance
In tokamak plasmas, performance is limited by turbulent radial transport of

both energy and particles.

e Gradient-driven
This turbulent transport is caused by drift-wave instabilities, driven by free

energy in plasma temperature and density gradients.

e Unavoidable :

These instabilities will persist in a reactor.

e Various types (asymptotic theory)
ITG, TIM, TEM, ETG ... + Electromagnetic variants (AITG, etc).
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Electron-ion Scale Separation

Parameterized by the electron-to-ion mass ratio

e Turbulence extends from electron (p.) scales to ion (p;) scales:

(La:)iN (Ly)z
(L. " (@,

e Characteristic times are short for electrons and long for ions :

~ [

e Critical parameter is the root of the mass-ratio

(= i 60
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Coupled ITG/TEM-ETG Transport

Motivation and What's New

® [s energy transport from electron-temperature-gradient (ETG) modes

significant?
— Is it a large fraction of the total .?
— Could it account for residual electron transport inan ITB?

— How do we define it, since its only part of \.?
e GYRO is well-suited (scalable, efficient) to study this problem.
e This work was supported by a DOE INCITE computer-time award.

e First simulations to resolve both electron-scale and ion-scale turbulence.

ETG

e

Let's define as that which arises from  kgp; > 1.0
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GYRO Weak Scaling

Increasing velocity-space resolution at fixed spatial grid

GYRO Weak Scaling (B3-gtc case)
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Multi-scale simulations require spatial grid refinement
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Multi-scale simulations require spatial grid refinement
M= 2, kepz <2
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Multi-scale simulations require spatial grid refinement
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Multi-scale simulations require spatial grid refinement
M= 8, kepz <3
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Three Ways to Treat lon Dynamics

Definitions

1. ETG-al = adiabatic ion model of ETG  (CHEAP)

lon scales do not enter

2. ETG-ki = kinetic ion model of ETG  (EXPENSIVE)
(no ion drive) — a/Ly; = 0.1, a/L,; = 0.1

3. ETG-ITG = kinetic ion model of ETG  (EXPENSIVE)
(ion drive) — a/Lp; = a/Lpe, a/Ly; = a/Ly,.

Other parameters taken to match the Cyclone base case

gq=14,s=08, R/la=2.78, a/Lr.=2.5, a/L,. =0.8
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The ETG-al Model

The minimal model of ETG, but is it sensible?

e Basis of original studies by Jenko and Dorland.

e Take short-wavelength limit  of the ion response:

edp(x,t)
T;

5f7;(X, V, t) — —TNo FM(|VD

e Nearly isomorphic to usual adiabatic-electron model of ITG.
e Computationally simple — ion time and space scales removed.

e The physics of zonal flows is dramatically altered.
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Three Ways to Treat lon Dynamics

Comparison of linear growth rates
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Reduced Mass Ratio for Computational Efficiency

A crucial method to cut corners (for ETG-ki and ETG-ITG models)

e Can deduce essential results using 1 < 60.

e Fully-coupled simulations, as shown, use light kinetic ions

p= 22— 9030 .

Me

3.5
i - 3.5. 30
e Simulation cost scales roughly as (°°: (2_O> ~ 4.
1= 20 5 days on Cray X1E (192 MSPs)
=30 5 days on Cray X1E (720 MSPs)
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The failure of the ETG-al model

Can illustrate the divergence by parameter variation
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I/ x B shearing rate: Vg
The ETG Cyclone Base Case DOES NOT SATURATE PHYSICALLY
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The failure of the ETG-al model

A false asymptote occurs if short-wavelength modes are unde rresolved
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The Effect of lon Gradients: ETG-ITG versus ETG-ki

Finite ion gradients reduce XGETG
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The reduction in ETG-ITG short-wavelength transport is not fully understood,;

probably the result of strong long-wavelength shearing
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Understanding the Effect of lon Gradients

What is the dominant physical mechanism for this reduction?
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Xe IS the nonlinear electron heat flux

ay/v; is the linear growth rate .

- : : 0:0 GENERAL ATOMICS
17 Instabilities at highly disparate scales



Effect of Reduced Perpendicular Box Size

A 32p; X 32p; box is enough to capture the physics for  kgpe > 0.1.

ETG-ITG  (a)
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Effect of perpendicular grid refinement

Remove spectral lip (4 days on 1536 XT3 CPUs, courtesy M. Fahey)
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Perpendicular Spectral Intensity of Density Fluctations
ETG-ITG spectrum is highly isotropic (streamerless) for kip; > 0.5
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Electron-scale eddies apparent in ETG-ki (left) simulation.
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Perpendicular Spectral Intensity of Density Fluctations

ETG-ITG spectrum is highly isotropic (streamerless) for kip; > 0.5
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Mass-ratio Comparison in Electron Units

Curve approaches universal shape at short wavelength ( kope > 0.1)
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Electron Transport Result Matrix

About 16% (8%) of electron transport comes from

kopi > 1 (kgp; > 2)

o kepi <1 kgp; >1 kgpi >2 kgpe > 0.1
Xi/xcBi 20 7.378 0.054 0.011
30  7.754 0.043 0.009
Xe/XcBi 20 2.278 0.367 0.183
30 1.587 0.296 0.157
D/xgpi 20 —0.81 0.134 0.009
30 —1.60  0.074 0.010
Xe/XGBe 20 3.67
30 3.76
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Coupled ITG/TEM-ETG Transport

Summary of main results

e The adiabatic-ion model of ETG is poorly-behaved .
— Transport becomes unbounded for some parameters.

— Using the kinetic ion response cures the problem.
e |on-temperature-gradient (ITG) transport is insensitive to ETG.

e Increased ITG drive can reduce ETG transport.

— Unclear how much of the effect is linear and how much is nonlinear .

e \What fraction of . Is XETG?

— Only 10% to 20% in the absence of E2 x B shear.

— Up to 100%, as ITG/TEM is quenched by E x B shear.
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